B.Sc.DEGREE(CBCS)EXAMINATION, DECEMBER 2018

First Semester

B. Sc Computer Science Model III

Complementary Course - EL1CMT06 - ELECTRONICS - FUNDAMENTALS OF DIGITAL SYSTEMS 2018 Admission only

46142D55
Maximum Marks: $\mathbf{8 0}$
Time: 3 Hours

Part A

Answer any ten questions.
Each question carries 2 marks.

1. (a) Determine the value of each digit in 939. (b) How high can you count with 4 bits?
2. Conver the decimal pairs -46 and 25 to binary and add using the 2 's complement form.
3. State the rules for hexadecimal addition citing suitable examples.
4. Find the binary and hexadecial equivalent of 14768 .
5. Implement the truth table and the logic circuit for the expression $X=A^{\prime} B C+A B^{\prime} C^{\prime}$
6. Implement the expression ABC+DE with NAND logic.
7. Determine the truth table for the following standard POS expression $(A+B+C)\left(A+B^{\prime}+C\right)\left(A+B^{\prime}+C^{\prime}\right)$ $\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)$.
8. Design a 4 X 1 MUX .
9. Explain the operation of a gated SR latch
10. What is meant by present and next state?
11. Why are shift register considered basic memory devices?
12. How a shift register counter differs from a basic shift register?
$(10 \times 2=20)$

Part B

Answer any six questions.
Each question carries 5 marks.
13. Perform the indicated operations.
(a) 1101+1011
(b) 1100-1001
(c) 1110×1101
(d) $1001 \div 11$.
14. Describe the functional differences between a NOR gate and a negative AND gate. Do they both have the same truth table?
15. Establish NOR gate as a Uiversal logic element
16. Realize the Basic gates using NAND and NOR gates.
17. Discuss commutative and associative laws of addition and multiplication in boolean algebrae.
18. Convert the expression $A B^{\prime} C+(A B)^{\prime}+A B C^{\prime} D$ to standard $S O P$ form.
19. Develop a timing diagram and combinational logic circuit for the function $X(=A(B+C))^{\prime}$
20. Compare a latch and a flip flop.
21. Design an asynchronous mod-12 counter

> Part C
> Answer any two questions.
> Each question carries 15 marks.
22. Give an account of alphanumeric codes. (a) ASCII (b) EBCDIC and ©Parity Codes.
23. Using Boolean algebrae techniques simplify the following expressions and implement using logic gates of both before and after simplification (a) $A B+A(B+C)+B(B+C)(b)(A B+A C)^{\prime}+A^{\prime} B^{\prime} C$ (c) $A B^{\prime} C(B D+C D E)+A C '$
24. Design a four bit magnitude comparator which checks for equality greater than and less than conditions.
25. With neat diagram and waveform explain a synchronous (a) decade counter (a) mod 12 counter

