B.Sc.DEGREE (CBCS) EXAMINATION, DECEMBER 2018

First Semester
B.Sc Computer Science Model III
Complementary Course - EL1CMT06 - ELECTRONICS - FUNDAMENTALS OF DIGITAL SYSTEMS 2017 Admission (Reappearance)
FB5EBAA1

Maximum Marks: 80
Time: 3 Hours

Part A

Answer any ten questions. Each question carries $\mathbf{2}$ marks.

1. Convert (a) 104410 (b) 2673410 (c) 54376510 (d) 7543910 to its corresponding binary.
2. Find the 1 's and 2's complement of the binary number (a) 11001011 (b) 1110001010 (c) 110000011 (d) 1111100111.
3. What is overflow condition in signed arithmetic? (b) Express +136 and -136 as an 8 -bit number in the 1 's complement form.
4. List the steps for converting a binary number to hexadecimal equivalent.
5. (a) When is the outpput of a NAND gate low? (b) When is th output of a NOR gate high?
6. Use NOR gates to imlement the expression (a) $X=A^{\prime}+B$ (b) $X=A B$.
7. Define the terms variable, complement and literal.
8. What are the peculiarities of even and odd parity checkers?
9. What are the applications of flip flops?
10. Draw the logic circuit for a master slave J-K flip flop.
11. How can shift register be used to generate a time delay?
12. What are the applications of shift registers?

Part B

Answer any six questions.
Each question carries 5 marks.
13. Find the Octal equivalent of the following decimal numbers (a) 54609.014 (b) 5436.31 (c) 9132 (d) 2139.64.
14. With suitable wave form, truth tables and logic symbols explain basic gates.
15. Develop a logic circuit that will produce a 1 on its output only when all three inputs are 1 s or when all three inputs are 0's.
16. Implement the expression (a) $X=\left(\left(A^{\prime}+B^{\prime}+C^{\prime}\right) D E\right)^{\prime}$ by using NAND logic (b) $X=\left(\left(A^{\prime} B^{\prime} C^{\prime}+(D+E)\right)^{\prime}\right.$ using NOR logic.
17. State and explain De-morgans theorems.
18. Simplify the expression and implement using logic gats. (a) (AB+AC)'+A'B'C (b) $A^{\prime} B C+A B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C+A B C$.
19. Implement a half subtractor with suitable truth table, logic expressions and symbols.
20. List the steps/procedure for designing a synchronous counter.
21. Give an account of cascaded counters.

Part C

Answer any two questions.
Each question carries 15 marks.
22. (a) Give an account of numbering systems citing suitable examples. (b) Find the binary, octal and hexadecimal equivalent of the following decimal numbers (a) 10.75 (b) 543.075 (c) 2345.275
23. Simplify using K-Mapand draw the logic diagram after simplification (a) $F(A, B, C, D)=(5,7,8,9,13,15)$ (b) $Y=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}+A B C^{\prime}(c) Y=\left(A^{\prime}+B+C\right)\left(A+B+C^{\prime}\right)$
24. With relevant figures explain a (a) priority BCD encoder (b) 8X1 MUX.
25. With neat diagram and waveform explain an asynchronous (a) mod 12 counter (d) decade counter

