\qquad

BSC DEGREE (CBCS) EXAMINATION , MAY 2019

Fourth Semester

B.Sc Computer Science Model III

Core Course - CC4CRT03 - COMPUTER AIDED OPTIMIZATION TECHNIQUES
2017 ADMISSION ONWARDS
81DC6BCD
Maximum Marks: $\mathbf{8 0}$
Time: 3 Hours

Part A

Answer any ten questions.
Each question carries $\mathbf{2}$ marks.

1. Explain the nature of $O R$?
2. Give some limitations of $O R$?
3. What are the components of an LPP
4. What are the characteristics of dual problem?
5. What is the condition to evaluate a transportation problem and how can we overcome from this?
6. What is the condition for evaluate an assignment problem and how can we overcome from this?
7. If number of assignment is not equal to the n [the order of cost matrix]. Then what are the steps involved to make it equal?
8. What do you mean by total elapsed time in sequencing problem?
9. What do you mean by no passing rule in sequencing problems?
10. What are the features of network flow models?
11. Define max flow- mini cut.
12. What is network scheduling?
$(10 \times 2=20)$

Part B

Answer any six questions.
Each question carries 5 marks.
13. Explain the characteristics of LPP.
14. Explain the basic assumptions in LPP.
15. Solve graphically,

Minimize $Z=3 \times 1+5 \times 2$
Subject to, $-3 \times 1+4 \times 2 \leq 12$
$2 x 1-x 2 \geq-22 x 1+3 x 2 \geq 12$
$x 1 \leq 4 \times 2 \geq 2$
$\mathrm{x} 1, \mathrm{x} 2 \geq 0$
16. A timber company ships pine flooring to three building supply houses from its mills in bhunya,mondi and pigg's peak. Determine the best transportation schedule for the data given below using the north west corner method.

SUPPLY SUPPLY SUPPLY MILL
HOUSE 1 HOUSE 2 HOUSE 3 CAPACITY(TONS)

BHUNYA	3	3	2	25
MONDI	4	2	3	40
PIGG'S PEAK	3	2	3	30
SUPPLY HOUSE DEMAND(TONS)	30	30	35	95

17. Explain the steps of assignment problem with example
18. Explain Shortest Route Problem
19. A machine shop has four machines A, B, C and D. Two jobs must be processed through each of these machines. The time (in hours) taken on each of the machines and the necessary sequence of jobs through the shop are given below: Obtain the total elapsed time.
Machines
Job 1 Sequence A B C D
Time 2451
Job 2 Sequence D B A C
Time 6423
20. Solve graphically,

Maximize $Z=8 X 1+6 X 2$
Subject to,
$4 X 1+X 2 \leq 60$
$2 X 1+4 X 2 \leq 48$
$\mathrm{X} 1, \mathrm{x} 2 \geq 0$
21. Briefly explain the limitations of network techniques
$(6 \times 5=30)$

Part C

Answer any two questions.

Each question carries 15 marks.
22. Explain about the applications of OR ?
23. Apply principle of duality to solve the LPP.

Minimize $Z=2 \times 1+2 \times 2$
Subject to,
$2 x 1+4 x 2 \geq 1$
$x 1+2 x 2 \geq 12 x 1+x 2 \geq 1$
$x 1, x 2 \geq 0$

Minimize $Z=x 1+x 2+x 3$
Subject to,
$9 x 1+5 x 2 \geq 1$
$x 1+6 x 2+2 x 3 \geq 1$

```
4x1+3x2+8x3 \geq1
```

$x 1, x 2, x 3 \geq 0$
24. Use the north-west corner method to find an initial solution to the problem described below.
E F G H supply

A 18011013029014
B 19025015025016
C 29029019012020
$\begin{array}{llll}11 & 15 & 19 & 10\end{array}$
25. The data for small project is given below.

Activity : A B C D E F
Optimistic time (days) : 91416242818
Most likely time (days) : 102020303620
Pessimistic time (days) : 142622364621
Precedence relationship is: $A<C, D ; B<C, D ; C<E ; D, E<F$
Find the expected activity time and their variances. Calculate the earliest and latest expected time to reach each node. What is the probability that the project will be completed 2 days earlier than expected?

