BSc DEGREE (CBCS) EXAMINATION , MARCH 2020
Fourth Semester
B.Sc Computer Science Model III

Core Course - CC4CRT03 - COMPUTER AIDED OPTIMIZATION TECHNIQUES

2017 ADMISSION ONWARDS

7FA27D7A
Time: 3 Hours
Marks: 80

Part A
 Answer any ten questions.
 Each question carries 2 marks.

1. Differentiate between static and dynamic models.
2. What are the components of an LPP?
3. Write the standard form of LPP.
4. What are the limitations of LPP?
5. What is the objective of transportation problem?
6. If the demand is not equal to the supply, then what is the solution?
7. What is prohibited assignment problem?
8. What are the principal assumptions made while dealing with sequencing problems?
9. What do you mean by maintenance crew scheduling?
10. What is network analysis? Which are the different network techniques?
11. Define max flow- mini cut.
12. What is earliest occurrence time and latest occurrence time of an event?

Part B

Answer any six questions.
Each question carries 5 marks.
13. Explain the nature of $O R$ and its limitations.
14. Solve graphically, Minimize $Z=-x 1+2 x 2$

Subject to,
$-x 1+3 \times 2 \leq 10$
$x 1+x 2 \leq 6$
$x 1-x 2 \leq 2$
$\mathrm{x} 1, \mathrm{x} 2 \geq 0$
15. Write the dual of the following.

Minimize Z= $2 \times 2+5 \times 3$
Subject to, $x 1+x 2 \geq 2$
$2 \times 1+x 2+6 x 3 \leq 6$
$x 1-x 2+3 x 3=4$
$x 1 \mathrm{x} 2, \mathrm{x} 3 \geq 0$
16. Calculate the prohibited assignment problem
item A B C D E F
A - 11151699
B $\quad 11$ - 10151410
C $1510-8 \quad 139$
D 16158 - 1110
E 9 141311-6
F $9 \quad 109 \quad 106$ -
17. Calculate the assignment problem

	E	F	G	H
A	8	10	4	11
B	2	12	35	30
C	23	42	15	2
D	9	18	20	3

18. Explain Shortest Route Problem.
19. Find the sequence that minimizes the total elapsed time in hours required to complete the following jobs on machines M1 and M2 in the order M1M2:

Job A B C D E F
Machine A $\begin{array}{llllll}4 & 8 & 3 & 6 & 7 & 5\end{array}$
Machine B $\begin{array}{llllll}6 & 3 & 7 & 2 & 8 & 4\end{array}$
20. Solve graphically,

Maximize $\mathrm{Z}=8 \mathrm{X} 1+6 \mathrm{X} 2$
Subject to,
$4 \mathrm{X} 1+\mathrm{X} 2 \leq 60$
$2 X 1+4 X 2 \leq 48$
$\mathrm{X} 1, \mathrm{x} 2 \geq 0$
21. Draw a network for the project whose activities and their precedence relationships are given below.
Activity : A B CDEF
Predecessor :
A, B A, C B, C
$(6 \times 5=30)$

Part C

Answer any two questions.
Each question carries 15 marks.
22. Explain about the applications of OR ?
23. Apply principle of duality to solve the LPP.

Minimize $Z=2 \times 1+2 \times 2$
Subject to,
$2 \mathrm{x} 1+4 \mathrm{x} 2 \geq 1$
$x 1+2 x 2 \geq 12 x 1+x 2 \geq 1$
$x 1, x 2 \geq 0$
Minimize $Z=x 1+x 2+x 3$
Subject to,
$9 x 1+5 \times 2 \geq 1$
$x 1+6 x 2+2 x 3 \geq 1$
$4 \times 1+3 \times 2+8 x 3 \geq 1$
$x 1, x 2, x 3 \geq 0$
24. Consider the following.

factories	Retail shops			
1	2	3	4	Supply

$1 \begin{array}{llllll}1 & 3 & 5 & 7 & 50\end{array}$
$2 \quad 2 \quad 5 \quad 8 \quad 75$
$3 \quad 3 \quad 6 \quad 9 \quad 25$
Demand 20205060
Find the initial basic feasible solution using North West corner method.
25. A project has the following characteristic

Activity
duration

	Optimistic	most likely	pessimistic
$1-2$	1	5	1.5
$2-3$	1	3	2
$2-4$	1	5	3
$3-5$	3	5	4
$4-5$	2	4	3
$4-6$	3	7	5

$5-7$	4	6	5
$6-7$	6	8	7
$7-8$	2	6	4
$7-9$	5	8	6
$8-10$	1	3	2
$9-10$	3	7	5

Construct a PERT network. Find critical path and variance for each activity. What is the probability that the project will be completed a) Within 35 days b) Within 28 days. Find the project duration at 95% probability.

